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Free convection from a horizontal line heat source in a non-Newtonian fluid-saturated 
porous medium has been investigated analytically, exploiting the boundary-layer approxi- 
mation. The boundary-layer equations based on the power-law model appropriate for 
the Darcy flows are shown to possess a class of similarity solutions for arbitrary values 
of the power-law index. Closed-form exact solutions for both flow and temperature fields 
are presented along with the approximate solutions based on the integral energy equation, 
and examined to investigate the non-Newtonian f low and heat transfer characteristics. 
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I n t r o d u c t i o n  

Free convection resulting from a concentrated heat source in 
a porous medium is of fundamental importance in many 
geophysics and engineering applications, such as geophysical 
flows, recovery of petroleum resources, cooling of underground 
electric cables, and environmental impact of buried heat- 
generating waste. When the Rayleigh number based on the 
strength of heat source is sufficiently high, the classical 
boundary-layer theory can be exploited. Wooding (1963) 
developed a boundary layer treatment for plane buoyant 
plumes in porous media, assuming the flow to be Darcian. 
Wooding's initial work on the boundary-layer theory has been 
followed by Yih (1965), who examined the validity of the 
boundary-layer approximation, and pointed out that the 
solutions reported by Wooding for Pr = 1 are valid for all 
Prandtl numbers. Recently, Lai (1990) reexamined the 
boundary-layer analysis, and concluded that the criticism 
brought by Yih on the boundary-layer approximation is not 
valid; therefore, the boundary-layer approximation for high 
Rayleigh number is applicable to free convection from a 
concentrated heat source in a porous medium. Cheng (1978) 
pointed out that the problem of plume rising from a 
horizontal-line heat source can be considered as merely a 
special case of the problem of a vertical heated surface with 
variable well temperature. Bejan (1984) and Masuoka et al. 
(1986) invoked the boundary-layer approximation to obtain 
similarity solutions for the problem of axisymmetric plume 
from a point heat source in a fluid-saturated porous medium. 
Non-Darcy free convection from a line heat source was 
investigated by Lai (1991), while that from a point heat source 
was analyzed by Ingham (1988). 

In all the above studies, the flow and temperature fields were 
determined under the assumption that the fluid was 
Newtonian. The assumption is not justified for a large class of 
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complex fluids, such as crude oils saturating underground beds 
and polymer solutions in chemical engineering applications. 
The Darcy flow model was proposed by Christopher and 
Middleman (1965) for non-Newtonian power-law fluid flows in 
porous media, and was later modified by Dharmadhikari and 
Kale (1985) to improve its performance, especially for the high 
pseudoplastic fluids. The model was employed successfully by 
Chen and Chen (1988a, 1988b) to study the problem of free 
convection of a non-Newtonian fluid over a vertical flat plate, 
and later by Nakayama and Koyama (1991) to find a class of 
possible similarity solutions for free convection of non- 
Newtonian fluids over a nonisothermal body of arbitrary shape 
in porous media. However, no theoretical results have been 
reported yet for the free convection problems associated with 
concentrated heat sources within non-Newtonian fluid- 
saturated porous media. 

In the present study, the Darcy flow model is used to describe 
the free convective flow rising from a horizontal heat source 
embedded in a non-Newtonian fluid-saturated porous medium. 
After appropriate similarity transformations based on a scale 
analysis, the boundary-layer equations are reduced to 
an ordinary differential equation. It will be shown that this 
ordinary differential equation possesses a remarkably simple 
closed form solution for an arbitrary value of the power-law 
index. Thus, the non-Newtonian characteristics can readily be 
explored. 

Governing equations and scale analysis 

Consider a line heat source of strength q* embedded in a 
non-Newtonian fluid-saturated porous medium. Using the x 
and y coordinates as shown in Figure 1, the equation of 
continuity in terms of the apparent (Darcian) velocities can be 
written as 

~u ~v 
- -  + - -  = 0 ( 1 )  

Bx By 

Under the boundary-layer approximation, the non-Newtonian 
power laws proposed by Christopher and Middleman (1965) 
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Figure 1 
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Physical model and its coordinates 

and Dharmadhikari  and Kale (1985) have a common form, 
which, when combined with the Boussinesq approximation, can 
be written as 

#* 
- -  u" = pgf l (T  - T~) (2) 
K* 

where n is the power-law index while/~* is the consistency index 
for the power-law fluid, and K* is the modified permeability 
for power-law fluids as given by Nakayama and Koyama (1991) 
based on the studies by Christopher and Middleman (1965) 
and Dharmadhikari  and Kale (1985). The energy equation is 
given as follows: 

dT dT dZT 
u - -  + v - -  = ~ (3) 

c~x ~y ~y2 

where • is the effective thermal diffusivity of the fluid-solid 
system. The energy equation must satisfy the boundary 
condition: 

y = ~ :  T = T ~  (4) 

and the enthalpy conservation constraint: 

p C v f ~  u ( T - T D d y = q  * (5) 

where p and C v are the density and specific heat at constant 
pressure of the fluid, respectively, 

A scale analysis on Equations 1, 2, 3, and 5 such as proposed 
by Bejan (1984), reveals that the centerline temperature and 
velocity decay as 

- - + . ,  q* 

( K*pgfl(ax)"  J - k< Ra~/2 (6) 

where k= ( = pCp~) is the effective thermal conductivity of the 
fluid-saturated porous medium, and 

~ ~(K,g,Sq,'~2 1 "~l/*, +2.> 

The plume width 6 is of the order 

(7) 

~# ,Cp(~x)l + .'~z/It + 2.) x 
6 ~ (  ~ J -Rax  1/2 (8) 

where 
Rax = ( K * gflq*x"~2/( i + 2") 

\/Z*Cp ~1 } (9) 

is the local Rayleigh number based on the heat source strength 
q*. Thus, the boundary-layer approximation is valid when 
the Rayleigh number Rax is sufficiently large such that 
f / x  ~ l .  Note UeO£X -l/(l+2n), (Te-- Te) ocx -nl(l+2n) and 
fi ac x ll +.)/tl + 2.1 such that uc ~ (To - T~) oz x -  1/3 and fi ~: x 2/3 
for Newtonian fluids. 

Exact solution 

The preceding scale analysis prompts us to propose a set of 
transformations for the stream function ~k ~ uc6 and the 
temperature profile function ( T -  T~) ~ (T~ - T~) in terms of the 
similarity variable r 1 ~ y/6 as follows: 

~b = ~ Ra~/2f(r/) (10) 

q* 
T -  T~ - ke R a ~ / ~  001) (11) 

and 

Y p 1/2 (12) 
= _ . .a  x 

X 

By virtue of introduction of the stream function ~b, the 
continuity equation (1) will be satisfied automatically. The 

Notat ion  

C p  

f 
g 
ke 

K* 

Rax 

T 
T~ 

Specific heat of fluid at constant pressure 
Dimensionless stream function 
Acceleration due to gravity 
Equivalent thermal conductivity of the fluid- 
saturated porous medium 
Intrinsic permeability of the porous media for flow of 
power-law fluids 
Power-law index of the inelastic non-Newtonian 
fluid 
Strength of heat source 
Local Rayleigh number based on q* (defined in 
Equation 9) 
Temperature 
Ambient constant temperature 

u, v Darcian or superficial velocity components 
x, y Boundary-layer coordinates 

Greek 

# 
6 

0 
M* 

letters 

Equivalent thermal diffusivity of the fluid-saturated 
porous medium 
Expansion coefficient of the fluid 
Plume width 
Similarity variable (defined in Equation 12) 
Dimensionless temperature difference 
Fluid consistency of the inelastic non-Newtonian 
power-law fluid 
Density of the fluid 
Stream function 
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velocity components u and v are given in terms of the proposed 
transformed variables as 

04 
u . . . .  Raxf '  (13) 

0y x 

and 

cg~b _ Ct Ra~/2 f 1 + n n "~ 
v - c~x x | \1  + 2n r/f' -- 1 + 2~ J) (14) 

Using Equations 11 to 14, Equations 2 and 3 can be 
transformed into the following set of the ordinary differential 
equations: 

(f')" = 0 (15) 

and 

n 
O" + - -  (fO)' = 0 (16) 

1 + 2 n  

Integrating Equation 16 once with the condition 0 = 0' = 0 as 
r/--. oo, 

n 
O' + fO = 0 (17) 

1 + 2 n  

Then, combining the above equation with Equation 15 in favor 
off, 

(1 + 2nX" + i f '  = 0 (18) 

It can easily be shown that the solution satisfying the foregoing 
equation and the boundary condition, namely, f =  0 at t /=  0 
must have the form 

f = A t a n h { 2  A } (1 + 2n) r/ (19) 

where constant A is determined from the enthalpy conservation 
constraint transformed as 

f o~ (f,)l dr/= (20) +n 1 

Hence, the final expressions for the streamwise velocity and 
temperature distributions are given by 

seth2 2(1 + (e Rax/x) 2(1 + 2n) 2n) ~ (21) 

and 

(q*/k, Ra~/2) - [ ~ J  sech2" ~ + 2n) r/ (22) 

where 

[ {2(1+2n)}" ] */"+2"' 
A = 2 S~ sechZtl +"~t dt (23) 

Since A = (9)1/3 for n = 1, the results naturally reduce to those 
of Newtonian fluids, reported by Wooding (1963). The 
numerical values of A are furnished in Table 1. 

A p p r o x i m a t e  so lut ion  

Instead of treating the energy equation in differential form, its 
integral form, namely, the enthalpy conservation constraint 
(Equation 5), is considered along with the energy balance 
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Table 1 Constant A 

n A 

0 0.5000 
0.1 0.6337 
0.2 0.7640 
0.3 0.8901 
0.4 1.0115 
0.5 1.1284 
0.6 1.2408 
0.7 1.3490 
0.8 1.4532 
0.9 1.5538 
1.0 1,6510 
1.1 1.7450 
1.2 1.8360 
1.3 1.9243 
1.4 2.0101 
1.5 2.0935 
1.6 2.1746 
1.7 2.2537 
1.8 2.3308 
1.9 2.4061 
2.0 2.4797 

relation along the center plane at y = 0 as 

d T~ ~( t~2 T~ 
uc dx = \~y2]c  (24) 

where the subscript c denotes the center line. Substitution of 
the Darcy model (Equation 2) into Equations 5 and 24, yields 

B #*Cp 6u~ + " =  q* (25) 
K *9fl 

and 
n u~ 1 

= C~ - -  (26) 
1 + 2n x ~2 

which can be combined to give 

6 = B - C Ra~/2 (27) 

where 6 is an arbitrary scale for the plume width, and 

n = d ~ (28) 

and 

c - O ( y / ~ ) 2  (29) 

The shape factors B and C can readily be evaluated, since the 
velocity profile function is assumed as 

u/u~ = exp {-(y/6)2} (30) 

such that the profile satisfies the boundary conditions required 
at the center plane and outside the plume. Since 

B = k l + n /  ' and (31a) 

C = --2n (31b) 

the final expression for ~ is given by 

- D Ra~/2 (32) 
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Hence, the velocity and temperature fields can be described 
approximately by 

{ o } 
u D exp 2(1 + 2n) ~2 (33) (c~ RaJx)  

and 

T - T ~  
(q*/kc Ra~/2) 

where 

- D" exp 2(1 + 2n) q 2  (34) 

I + n "~1/(1 +2.) 

D = [2n(1 + 2n)J 
(35) 

R e s u l t s  a n d  d i s c u s s i o n  

The velocity profiles for n = 0.5, 1, and 2, based on exact and 
approximate solutions, are presented in Figure 2. The figure 
shows that the dilatant fluid (n = 2) produces a more peaked 
velocity profile, and its dimensionless velocity level is higher 
than those of the Newtonian (n = 1) and pseudoplastic (n = 0.5) 
fluids. The corresponding temperature profiles are presented in 
a similar fashion in Figure 3, where it can be seen that the 
dimensionless temperature level of the pseudoplastic fluid is 
much higher than the others, since a comparatively low velocity 
field prevails in the pseudoplastic fluid-saturated porous 
medium, as seen in the preceding figure. These figures show 
that both the velocity and temperature profiles from the 
approximate solution agree fairly well with the exact profiles. 
The performance of the approximate solution methodology is 
further examined against the exact solution in Figure 4, in terms 
of the velocity and temperature levels at the plume center. 

-8 -6 -4 -2 0 2 4 6 8 

0.7 m 

Exact soln. 

~ m ~ Approx. soln, 

"~ 0 . 5  

Io[~ o . ~  - Z// 
Ii 

0 . 3  

m X 0.2 

0.i -- 

o I I I I 
0.5 1.0 1.5 2.0 

1"1 
Figure 4 Effect of the power-law index on the velocity and 
temperature at the plume center 

Although the approximate solution consistently overestimates 
the levels, an overall agreement between the two solutions 
appears to be satisfactory over the practically important range 
of the power-law index. 

Equation 22 for the temperature field can be rewritten as 

T -- T~ {A2/2(1 + 2n)}" ~ARa~/2 (y/L) 
(q,/ke~) - Ra~/2(x/L)./(I + 2n) sech2" [2(1 + 2n) (x/L) (1 +")/(I + 2.) 

where 

(K*g~q*L"~ 2/(t + 2"' 
Raz = 

\~*CpCO+"/ 

(36) 

(37) 

and L is an arbitrary reference length scale. The isotherms for 
( T -  Tc)/(q*/kc) = 0.02 generated from Equation 36 for n = 0.5, 
1, and 2 at RaL = 500 and 1,000 are presented in Figure 5, 
where the ordinate and abscissa scales are taken differently in 

1.2 

]7 RaL = 500 ~ ' x ~ _  Ra5 = 1000 

/ Figure 2 Velocity profiles 
T - T e 

n = 0.5 q*~-k~- 0.02 

0.8 -- 

- - ~ o . 8  I 1 
I Ex=t I 

E~¢J ~a) | . . . .  Approx. soln. | 
X 0.6 ,. , ?o5 

/ 

i),, 
0 12 0 08 0 04 0 0.04 0.08 0.12 

-8  -6  -4  -2  0 2 4 6 8 y / L 

]7 Figure 5 Isotherms for ( T -  Te)/(q*/Ke) = 0.02, (a) RaL = 500; 
Figure 3 Temperature profiles (b) RaL = 1,000 
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order to stretch a thin plume in the y-direction. The figure 
shows that, for a fixed RaL, the warm region expands further 
as the power-law index decreases. It can also be seen from the 
figure that the temperature drops away from the heat source 
more drastically as RaL increases. 

Conclusions 

In this study, the plane plume resulting from a line heat source 
in a non-Newtonian fluid-saturated porous medium has been 
analyzed using the boundary-layer equations based on the 
power-law model. Similarity solutions are found to exist for an 
arbitrary value of the power-law index n. The numerical values 
of the constant A, which is to be determined from the energy 
conservation constraint, are furnished for the range of 
0 < n < 2. A simple integral method was also introduced to 
find the approximate formulas, which are found to agree fairly 
well with the exact solutions. The velocity and temperature 
fields based on the exact and approximate solutions are 
examined in detail to investigate the non-Newtonian fluid flow 
and heat transfer characteristics. 
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